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The use~ of the reflection ugu illustrates this differ- 
ence. The unrestricted phase ~00~ u may be set to some 
arbitrary value since it serves only to fix the origin on a 
polar y axis, but the phase ~0,g, (or for that matter any 
other unrestricted phase) must be assigned a value 
which conforms with the four permissible origins along 

~ and the origin on (x,z) [i.e. (0,0), (½,0), (0,½) and (:,~)1, 
the y axis fixed by 01 u. 

The problem is that the value of ~oug u is unknown at 
the start of a direct-methods process, and it is 
necessary to try a series of values between 0 and 2n. 
Typically, Ougu could be initiated at n/4, 3n/4, 5n/4, 
and 7n/4 in four separate calculations and be permitted 
to vary in the final cycles of phase refinement. An 
interesting aspect of this procedure is that if the actual 
value of tp,gu is significantly different from 0 and n, it 
will also serve to specify the enantiomorph, and the 
multi-solution process need only vary its value be- 
tween 0 and n. However, if the value of ~0,~, happens to 
be close to 0 or n then another reflection must be 
specified to fix the enantiomorph. For this reason it is 
strongly recommended that an additional phase is 
specified for independent enantiomorphic discrimi- 
nation. 

(i) Test uuu (class 13, Table 3): 

n' = ( 1 , u , 1 )  U - l  = ( u , u , 1 )  

and 
q¢ = (u,u, 1) (0,0,q) = q. 

Since ~Ouu u is unrestricted it may be used to specify the 
enantiomorph provided it is significantly different from 
q and q + n. 

(ii) Test Ouu (class 3, Table 3): 

n' = (0 ,u ,  1) U -  ~ = (u,g,O) 
and 

~o' = (u,g,O) (0,0,q) = 0. 

Since (00u u is unrestricted, it may be used to specify the 
enantiomorph provided it has a value significantly 
different from 0 and n. 
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A b s t r a c t  

Application of limit theorems valid for large values of 
the sum of independent random variables shows that 
for an equiatomic structure with n atoms in the 
asymmetric unit in the space group P1 the probability 
density distribution of the structure amplitude F for I FI  

large is 

p( x ) dx = [ n/2 n(1 - x 2)] 1/2 ( e / n)n/2 (1 - x )t"- ,/2 dx 

where x = F / 2 n f i s  the unitary structure amplitude and 
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f is the atomic scattering factor. The expression will be 
somewhat different for other space groups. 

1. I n t r o d u c t i o n  

The probability distribution of structure amplitudes is a 
special case of the random-walk problem. Expressions 
valid for resultants small compared with the maximum 
possible are readily available, but the standard sources 
do not give expressions valid for large resultants 
(Wilson, 1980). The present paper uses a limit theorem 
other than the central-limit theorem to derive an 
approximate distribution for large structure amplitudes 
in the space group Pi .  
© 1983 International Union of Crystallography 
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The structure amplitude F for an approximately 
equiatomic structure in space group P i  is given by 

F/2f=--y = cos 0 a + cos 0 2 + . . .  + cos O n, (1) 

where f is the atomic scattering factor and O~ is the 
phase angle of the/ th  atom in the asymmetric unit of n 
atoms. If 0 l is uniformly distributed in the range 0 to 
2r,, the probability of cos 0 t having a particular value is 
given by the well-known probability distribution 

p ( X t ) d X t =  n"q(1--X/2) -1/2, [ X  1 [ ~ 1, 

= 0, otherwise. (2) 

The maximum value of l yl is obviously n, though its 
typical values are much smaller, of the order of n v2. 
For these typical values the usual central-limit theorem 
gives the familiar centric distribution function (Wilson, 
1949). There are, however, other limit theorems, 
apparently first given by Cram6r (1938), expressing the 
probability of resultants like 

y = X ~  + X 2 + . . .  + 2". (3) 

in terms of the moment-generating function of the 
variables X l, assumed to be independent and to have 
the same probability distribution, but without making 
the assumption that y is small compared with n I X I max" 
A simple statement of some of the theorems is given by 
Petrov (1965), whose notation is used here as far as 
possible. 

The moment-generating function is defined by 

R ( h ) = ( e x p ( h X ) ) =  f e x p ( h X ) p ( X ) d X .  (4) 

Other functions needed are its logarithm, the cumu- 
lant-generating function, 

K(h)-- logeR(h) ,  (5) 

the derivative of the cumulant-generating function, 

m ( h ) - K ' ( h ) = ( X e x p ( h X ) ) / ( e x p ( h X ) ) ,  (6) 

and the second derivative 

( X 2 e x p ( h X ) )  ( Xe xp  (hX)) 2 
a2(h) -= K"  (h) = 

(exp (hX))  (exp (hX)) 2 
(7) 

The notation in (6) and (7) reflects the fact that m(0) 
and a2(0) are the ordinary mean and variance of X. The 
theorems in question state that, under various alterna- 
tive conditions that appear to be satisfied for the 
present application, the probability of y attaining a 
value equal to or greater than a fraction x of its 
maximum value n is given by 

exp {nK (h) - nhx } 
P(y > n x ) =  {1 + o(1)}, (8) 

(2zm) v2 ha(h) 

where in equation (8) h is the unique real root of the 
equation 

m ( h ) = x ,  (9) 

and o(1) indicates a function of n that is negligible in 
comparison with unity when n is sufficiently large. 

For reasonable distributions the complementary 
cumulative distribution function given by (8) can be 
differentiated to give the more familiar probability 
density distribution p(x).  The relation is 

x 

1 -- P = f p ( x )  dx,  (10)  
--OO 

so that 

p(x )  dx = - ( d P / d x )  dx, 

p (x )  dx = P(y > nx) 

x {-nm(h)  h' + nh +nh' x + h -1 h' 

+ a -l a' + ""}  dx, 

(11) 

(12) 

where the primes denote differentiation with respect to 
x. Since h has been chosen to fulfil (9), the first and 
third terms cancel each other. Since the fourth and fifth 
do not contain n, they can be absorbed into the o(1), 
but it will appear later that ha(h) is almost constant for 
large x, and they would in any case practically cancel 
each other. The probability density distribution is thus 

p(x )  dx = ( n / 2 7 t a 2 )  1/2 exp {nK(h) -- nhx } 

x {1 + o(1)} dx (13) 

= (n/2mr2)u2Rn(h) exp ( -nhx){1  + o(1)} dx. (14) 

2. Space group P i  

2.1. General expressions 

The expressions just given apply for any moment- 
generating function. For the structure amplitudes in the 
space group P i  the moment-generating function is 

1 
1 

f - -  X 2 )  -1/2 R ( h ) = -  (1 exp (hX) dX (15) 
7t d 

-1  

=/o(h), (16) 
where I 0 is the zero-order modified Bessel function of 
the first kind (Abramowitz & Stegun, 1964, formula 
9.6.18). The remaining functions become 

g(h)  -- log e Io(h) 

m(h) = I~(h)/Io(h)= Ii(h)/Io(h) 

= X  

aE(h) = I~'(h)/Io(h ) --[I~(h)/Io(h)] 2 

= 1 - - x / h - - x  2. 

Examination of tables and series expansions of Bessel 
functions shows that for small h the function m(h) 
increases as ½h, then bends over, and for large h it 

(17) 

(18) 

(19) 

(20) 

(21) 
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approaches unity as 1 - (2h) -1. Equation (9) thus has a 
single root for all values of x between 0 and 1, as 
expected, which is given approximately by 

h =  1 / 2 ( 1 - x )  + ¼ + - . .  (22) 

for large h (x approaching unity); a 2 is thus ap- 
proximately ½ - x 2 for h and x small and 
(1 - x) 2 (1 + x) for x approaching unity. 

2.2. S m a l l  resultants 

It is reassuring that, with the values of h and a just 
derived for small x, (13) reduces to the centric 
distribution. For small h the cumulant-generating 
function is 

K (h) = loge I0(h) = ¼h 2 + ..., (23) 

so that (13) becomes 

p ( x )  dx  = (n/zO 1/2 exp {¼n(2x) 2 - 2nx 2 } (1 + . . . )  dx  

= (n/zO 1/2 exp ( - n x  2) dx + .... (24) 

The normalized structure amplitude is related to x by 

E = (2n) ~/2 x, (25) 

so that (24) becomes 

p ( E )  dE = (2n) -1/2 exp (-,~d~ 2) dE + .... (26) 

the correct centric expression when E is regarded as 
taking on negative as well as positive values. 

2.3. Large  resultants 

For x approaching unity, and hence h becoming 
large, the Bessel functions may be replaced by their 
asymptotic expansions (Abramowitz & Stegun, 1964, 
formula 9.7.1). The cumulant-generating function 
becomes 

K ( h ) =  logeIo(h )= h - ½ 1 O g e ( 2 n ) - ½ 1 o g e h  + . . .  (27) 

and 

m(h)  = 1 - ( 2 h )  -I + ... (28) 

K(h)  - hm(h)  = ½ -  ½ loge(2n) - ½ log e h + . . .  

= ½ loge[e(1 -- x) t"/2)- 1 dr. (29) 

on using (22). Equation (13), with the value of a 2 
following (22), now gives 

p(x)  dx = [n/2z~(1 + x)]l/2(e/zOn/2(1 - -  x) (n/2)-I dx. 
(30) 

This looks reasonable for the moderate and large values 
of x and n to which it is expected to apply, since it 
diminishes rapidly as x increases and vanishes for 
x - 1 .  

Equation (30) cannot be expected to apply for n 
small, but it is nevertheless interesting to consider the 
special cases n = 1 and n = 2. For n = 1 

p ( x )  dx = (e/2) v2 n-l(1 - x2) -v2 dx, (31) 

which is its correct value, as given by (2), except for the 
factor (e/2) 1/2 = 1.1658 .... It is not clear whether this 
close reproduction of the original distribution, after all 
the intervening approximations, is anything more than 
a curiosity. For n = 2 

p ( x )  dx = (e/n) [z~(1 + x)] -1/2 dx. (32) 

This is qualitatively similar to the correct distribution, 
as shown in Fig. 3.1 of Srinivasan & Parthasarathy 
(1976), but shows less variation with x. 

3. Extension to other space groups 

With some adjustments of factors of two, the ex- 
pressions derived above would apply to the real and 
imaginary parts of structure amplitudes in the space 
group P1. There is no obvious way, however, of passing 
to the distribution of I FI for this space group, since the 
real and the imaginary parts are highly correlated when 
large. The moments and cumulants, up to about the 
tenth, are known for the higher space groups (Wilson, 
1978; Shmueli & Wilson, 1981; Shmueli, 1982; and 
papers in preparation), but the cumulant-generating 
function expressed in ascending powers would have to 
be inverted into an asymptotic expansion in some way 
before the equivalent of (27)-(29) could be obtained. 
Further work may be worth while, as the Edgeworth or 
Gram-Char l ie r  expansions developed by Shmueli and 
Wilson show unacceptable negative probabilities for 
some ranges of structure amplitude greater than about 
2Z q/2. Some progress has been made with the space 
groups of the point group 2/m. 

I am indebted to Mr D. M. Grove of the Department 
of Statistics for checking some of the manipulations. 
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